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fluctuations in Pd-H: 11. Elastic constants above the 
critical point 
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Department of Physics, University of Toronto. Toronto, Ontario, Canada M5S 1A7 
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Abstract. Ultrasonic velocity measurements were made on Pd-H in the pressure and tem- 
perature regime above the critical point of the e- f3 transition. The results were used to 
determine the elastic constants for the system and IO compute the spinodal temperatures for 
the macroscopic density fluctuations near the critical point. 

1. Introduction 

The theory of Wagner and Horner [l-31 on the behaviour of metal hydrogen systems 
has determined that the dominant interaction among interstitial hydrogens in the region 
of the critical point is the elastic interaction mediated by the underlying metal lattice. 
Thus it is necessary to measure the parameters of the elastic interaction, in this region 
of the phase diagram, in order to fully describe the behaviour of the metal-hydrogen 
system. 

In the previous paper, I ,  the determination of the characteristic energies for the 
macroscopic hydrogen density modes in terms of the measured elastic constants of the 
metal-hydrogen lattice was treated. We discuss here the experimental measurement of 
the elastic constants of the Pd-H system, and apply the results to the thin Pd-H disc 
analysed in I. 

I . l .  The experimental apparatus 

The in situ apparatus allowed the ambient hydrogen pressure and temperature to be 
continuously vaned, and the isotherm data of de Ribaupierre and Manchester [4,5] and 
Wicke and Blaurock [6] were used to determine the hydrogen content of the sample. A 
Matec model 560 RF pulse generator (Matec Inc, Providence, Rhode Island, USA) 
produced pulses of 15 MHz sound, and an oscilloscope was used to track the reflection 
signals. The time elapsed between successive reflection peaks, together with the length 
of the sample, determined the sound velocity and hence the elastic constants [7]. 

The samples were single-crystal palladium supplied by Metals Research Ltd, UK, 
and were oriented to wnithin a half degree along the [lll] and [llO] axes using the La& 
back-reflection method. After spark-cutting into shape, the ends were finished with 
diamond paste to within 2 pm parallelism. The surface was carefully degreased and 

0953-8984/97/092149 + 06 $04.50 @ 1992 LOP Publishing Ltd 2149 



2150 

etched before commencing the bonding procedure used to affix a quartz crystal trans- 
ducer. 

M Sandys-Wimsch and F D Manchesler 

1.2. Transducer bonding 

Quartz crystal transducers (Valpey-Fisher Co., Hopkinton, Massachusetts, USA) were 
attached to the palladium crystals with polyimide die adhesive (Transene Co., Rowley, 
New Hampshire, USA). This adhesive polymerizes at 270°C and was found to be 
resilient to the large strains which result from loading the sample with hydrogen to the 
critical concentration. Several attemptswere usually necessary toobtain aworking bond 
that would tolerate hydrogen-loadingofthcsample. The mismatch in expansion between 
the palladium crystal and the transducer, Af/fo = 1% at the critical point, limited the 
regime in which reliable measurements could be made to a hydrogen concentration of 
no more than H/Pd = 0.4. 

2. Results 

The velocity varied linearly with changing concentration and pressure. In contrast to the 
low-temperature behaviour [S, 91 the variation with temperature was small and did not 
depend significantly on the hydrogen concentration. The relative change in velocity is 
plotted in figure 1, with the temperature variation corrected, for longitudinal propa- 
gation along a [ l l O ]  direction. The linear expansion of the palladium sample heated 
through a temperature change ATand loaded to hydrogen concentration p is [4] 

AI/Io = 0 . 0 6 6 ~  + (1.15 + 6 . 3 ~ )  X AT (2.1) 

The elastic constants are directly related to the velocities as shown in, for example, 
Bhatia [7]. Four combinations of elastic constants were determined. The longitudinal 
propagation along [ 1101 is given by 

. , ., , ., . . , , , , , 

U ,  = V'(CI1 i Ciz + 2C44)/2d (2.2) 

where d is the density of the metal-hydrogen sample. The transverse velocity excited in 
the [OOi] direction is 

U ,  = m. (2.3) 
Longitudinal propagation along [ 1111 has velocity 

(2.4) 

(2.5) 

, . ,. ,. , .. , , , , , , 

U!  = V'(C1i + 2Cl2 + 4C44)/3d 

and the transverse velocity 
. ~..  

ut = V\/(Cll - Cl2 t C44)/3d. 

Corrections must be made to allow for the  expansion of the palladium lattice and the 
adiabatic nature of the constants measured. This latter correction [7] to obtain the 
isothermal constants CT from the set of adiabaticconstants, C', is 

(2.6) c:, - cs, = c:, - cs2 = -(T/Cv)(CS, + 2CS2)2012 

CL - C& = o  (2.7) 
where (Y is the coefficient of linear thermal expansion. This i s  a correction of only about 
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Figure 1. C,, + C,! t ZC,. corrected for temperature variations. versus hydrogen density. 
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Figure 2. C,, corrceted for temperature variations. versus hydrogen density. 
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Figure3. C,, + 2C,2 + 4Cd4. corrected for temperature variations. versus hydrogen density. 

1% at the critical point. The four combinations of elastic constants, which are related to 
velocities of propagation (equations (2.2-2.5)) are plotted as functions of the hydrogen 
density in figures 14, respectively, with a straight-line regression fit. Regression fits for 
the elastic constants are shown in table 1. For comparison, previous work at lower 
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Flgure4. C,, - C,! t C,, corrected for temperature variations. \'ersus hydrogen density. 

Table 1. Isothermal elastic constants in IO" J m-3. Data from Geerken era1 [SI and Hsu and 
Leisure 191. values at 3W K (upper part of table) and from the present work. temperature 
3W350'C. p betweenOand0.4O(lower part of table). 

Pd PdHoan 
.~ 

C, ! 2.2378 
C12 1.7312 
V, 0.7125 

2.1088 
1.5665 
0.6345 

C, I 1.736 - 8 . 2 X  lO-'K~'(T-566)-0.11p 
CIl 1.19 +7.9X 10-'K-'(T-566)+O.llp 
C, 0.576 - 5.4 X lO-'K-'(T- 566) - 0 . 3 7 ~  

temperatures is also shown. Note that the hydrogen density is expressed as the (dimen- 
sionless) ratio H/Pd. 

3. Discussion 

The eigenenergies for macroscopic modes involve the elasticconstants evaluated at the 
particular temperature and pressure point being considered for a mode. A problem 
arises with choosing the appropriate set of constants to use, for the phenomena of long- 
range fluctuations occur only in coherent metal-hydrogen crystals, where the full set of 
cubic constants is appropriate, while the theory applies to isotropic systems, with the 
exception of the weakly anisotropic sphere [lo]. Further. measurement of the proper 
cubic constants is not really possible below the incoherent spinodal, for then the system 
undergoes plastic deformation and becomes polycrystalline. 

The discussion of isotropy is alittle ambiguous, but one may follow Mason [ 111 and 
define effective isotropic constants for the case where the system becomes completely 
polycrystalline. Then the Lame constants are 

A = c,, - 2c44 - 3q p=C44+& (3.1) 

where 
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Figure 5. Spinodal curves for the first four 
macroscopic density modes. The com- 
plexity of the dilation is measured by the 
number I. which describes the highest 
power of r in the expression for the 
dilation. Each of the spinodal cuwes rep- 
resents a family of (almost degenerate) 
modes, differing only in the angular vari- 
ation. ascharacterized by the integerl. 

q = Cll - c,, - 2cu. 

Thus the Lam& constants at the critical point may be taken as 

A = 1.136 2 0.008 x 10" J m-) 

,U = 0.377 0.005 x 10" J m-3, 
(3.3) 

(3.4) 
Wagner and Horner [l] have shown that, near the critical point, only the first few 
macroscopic modes would contribute much to the critical behaviour. Considering a disc 
as treated in I,  and using a circular polar coordinate system aligned with the disc sample, 
the first three modes are 

Q1.0 [V(R4/48 + 4L4/45)]-1'2[(~2 - $r2) + (iR2 - iL2)] (3.5) 

Y0.0 = [V /3 ] -@z  (3.6) 
Y,,o = [V(L2R4/16 + 4L6/175)]-"2[(z3 - h r 2 )  + (%R2 - SL3)]. (3.7) 

The constant gradient mode, Yo0, is degenerate with the (incoherent) constant density 
mode, but the other two are suppressed by an amount 

AI=Tc- T,=20K. (3.8) 

TS.1 = W , l / k B f 2  (3.9) 

This follows from using the formulae for the spinodal apex temperatures from I 

where wrl is the eigenvalue for the mode described by numbers s and I ,  

for odd panty modes, k, is Boltzmann's constant, andf, is the second derivative of the 
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reference free-energy density, evaluated for a constant density distribution. Substituting 
in the values (3.3) and (3.4) for the elasticconstants, 

M Sandys- Wunsch and F D Manchester 

Ts,, = 691/[ 1 + 0.332 r3 2 s + 3  + . . .)I. (3.11) 

The spinodal curves are shown near the critical density for the first few macroscopic 
modes in  figure 5. 

4. Conclusions 

The elastic constants of the palladium-hydrogen system were found to vary regularly 
near the critical point, an indication that while the hydrogen interstitials are undergoing 
aphase transition, the underlyingpalladium latticeisbasically unaffected by the presence 
of a critical point. This supports the concept of the system as a good example of a lattice 
gas, as put forward by Hill [12]. The separation of the spinodal temperatures for the 
modes in a thin disc should be accessible experimentally. 
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